
Minishell
Tan bonito como shell

Resumen: El objetivo de este proyecto es que crees un shell sencillo. Sí, tu propio
pequeño bash. Aprenderás un montón sobre procesos y file descriptors.

Versión: 7.1

Índice general
I. Introducción 2

II. Instrucciones generales 3

III. Parte obligatoria 5

IV. Parte extra 8

V. Entrega y evaluación 9

1

Capítulo I

Introducción

La existencia de los shells se remonta a los orígenes de IT.

Por aquel entonces, todos los programadores estaban de acuerdo en que comunicarse
con un ordenador utilizando interruptores de 1/0 era realmente frustrante.

Era cuestión de tiempo que llegaran a la idea de crear un software para comunicarse
con los ordenadores utilizando líneas de comando interactivas en un lenguaje parecido al
utilizado por los humanos.

Gracias a Minishell, podrás viajar en el tiempo y volver a los problemas a los que
la gente se enfrentaba cuando Windows no existía.

2

Capítulo II

Instrucciones generales

• Tu proyecto deberá estar escrito en C.

• Tu proyecto debe estar escrito siguiendo la Norma. Si tienes archivos o funciones
adicionales, estas están incluidas en la verificación de la Norma y tendrás un 0 si
hay algún error de norma en cualquiera de ellos.

• Tus funciones no deben terminar de forma inesperada (segfault, bus error, double
free, etc) excepto en el caso de comportamientos indefinidos. Si esto sucede, tu
proyecto será considerado no funcional y recibirás un 0 durante la evaluación.

• Toda la memoria asignada en el heap deberá liberarse adecuadamente cuando sea
necesario. No se permitirán leaks de memoria.

• Si el enunciado lo requiere, deberás entregar un Makefile que compilará tus archivos
fuente al output requerido con las flags -Wall, -Werror y -Wextra, utilizar cc y
por supuesto tu Makefile no debe hacer relink.

• Tu Makefile debe contener al menos las normas $(NAME), all, clean, fclean y
re.

• Para entregar los bonus de tu proyecto deberás incluir una regla bonus en tu
Makefile, en la que añadirás todos los headers, librerías o funciones que estén
prohibidas en la parte principal del proyecto. Los bonus deben estar en archivos
distintos _bonus.{c/h}. La parte obligatoria y los bonus se evalúan por separado.

• Si tu proyecto permite el uso de la libft, deberás copiar su fuente y sus Makefile
asociados en un directorio libft con su correspondiente Makefile. El Makefile
de tu proyecto debe compilar primero la librería utilizando su Makefile, y después
compilar el proyecto.

• Te recomendamos crear programas de prueba para tu proyecto, aunque este trabajo
no será entregado ni evaluado. Te dará la oportunidad de verificar que tu
programa funciona correctamente durante tu evaluación y la de otros compañeros.
Y sí, tienes permitido utilizar estas pruebas durante tu evaluación o la de otros
compañeros.

• Entrega tu trabajo en tu repositorio Git asignado. Solo el trabajo de tu repositorio
Git será evaluado. Si Deepthought evalúa tu trabajo, lo hará después de tus com-

3

Minishell Tan bonito como shell

pañeros. Si se encuentra un error durante la evaluación de Deepthought, esta habrá
terminado.

4

Capítulo III

Parte obligatoria

Nombre de pro-
grama

minishell

Archivos a entre-
gar

Makefile, *.h, *.c

Makefile NAME, all, clean, flean, re
Argumentos
Funciones autor-
izadas

readline, rl_clear_history, rl_on_new_line,
rl_replace_line, rl_redisplay, add_history,
printf, malloc, free, write, access, open, read,
close, fork, wait, waitpid, wait3, wait4, signal,
sigaction, kill, exit, getcwd, chdir, stat,
lstat, fstat, unlink, execve, dup, dup2, pipe,
opendir, readdir, closedir, strerror, perror,
isatty, ttyname, ttyslot, ioctl, getenv, tcsetattr,
tcgetattr, tgetent, tgetflag, tgetnum, tgetstr,
tgoto, tputs

Se permite usar
libft

Sí

Descripción Escribe un shell

Tu shell deberá:

• Mostrar una entrada mientras espera un comando nuevo.

• Tener un historial funcional.

• Buscar y ejecutar el ejecutable correcto (basado en la variable PATH o mediante el
uso de rutas relativas o absolutas).

• Evita utilizar más de una variable global para indicar la recepción de una señal.
Piensa en lo que implica: Esta aproximación evita que tu gestor de señales acceda
a tus estructuras de datos principales.

5

Minishell Tan bonito como shell

¡Cuidado!. Esta variable global no puede proporcionar ninguna otra
información o datos que el número de una señal recibida. Por lo tanto
está prohibido utilizar estructuras de tipo “norm” en global.

• No interpretar comillas sin cerrar o caracteres especiales no especificados en el
enunciado como \ (barra invertida) o ; (punto y coma).

• Gestionar que la ’ evite que el shell interprete los metacaracteres en la secuencia
entrecomillada.

• Gestionar que la " evite que el shell interprete los metacaracteres en la secuencia
entrecomillada exceptuando $ (signo de dólar).

• Implementar redirecciones:

◦ < debe redirigir input.

◦ > debe redirigir output.

◦ “<<” debe recibir un delimitador, después leer del input de la fuente actual
hasta que una línea que contenga solo el delimitador aparezca. Sin embargo,
no necesita actualizar el historial.

◦ “>>” debe redirigir el output en modo append.

• Implementar pipes (carácter |). El output de cada comando en la pipeline se
conecta a través de un pipe al input del siguiente comando.

• Gestionar las variables de entorno ($ seguidos de caracteres) que deberán ex-
pandirse a sus valores.

• Gestionar $?, que deberá expandirse al estado de salida del comando más reciente
ejecutado en la pipeline.

• Gestionar ctrl-C ctrl-D ctrl-\, que deberán funcionar como en bash.

• Cuando sea interactivo:

◦ ctrl-C imprime una nueva entrada en una línea nueva.

◦ ctrl-D termina el shell.

◦ ctrl-\ no hace nada.

• Deberá implementar los built-ins:

◦ echo con la opción -n.

◦ cd solo con una ruta relativa o absoluta.

◦ pwd sin opciones.

◦ export sin opciones.

6

Minishell Tan bonito como shell

◦ unset sin opciones.

◦ env sin opciones o argumentos.

◦ exit sin opciones.

La función readline puede producir algunos leaks que no necesitas arreglar. Eso no
significa que tu código, sí, el código que has escrito, pueda producir leaks.

Limítate a hacer lo que pide el enunciado. Cualquier cosa no
solicitada no se requiere.
Para cada punto, y en caso de dudas, puedes utilizar bash como una
referencia.

7

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/

Capítulo IV

Parte extra

Tu programa deberá implementar los siguientes puntos:

• &&, || con paréntesis para prioridades.

• Los wildcards * deben funcionar para el directorio actual.

Los bonus solo serán evaluados si tu parte obligatoria está PERFECTA.
Con PERFECTA queremos naturalmente decir que debe estar completa,
sin fallos incluso en el más absurdo de los casos o de mal uso,
etc. Significa que si tu parte obligatoria no tiene TODOS los puntos
durante la evaluación, tus bonus serán completamente IGNORADOS.

8

Capítulo V

Entrega y evaluación

Entrega tu proyecto en tu repositorio Git como de costumbre. Solo el trabajo entre-
gado en el repositorio será evaluado durante la defensa. No dudes en comprobar varias
veces los nombres de los archivos para verificar que sean correctos.

M L Q * d z O k v P
:)? e Q 6 u nk] R *

f *q lV - O , ?ZP
7 c 1V H

e 9 () 8
U

’ > D s / w
; E ’ > M
q < >

z b H (3
l X 0g E 6

9

	Introducción
	Instrucciones generales
	Parte obligatoria
	Parte extra
	Entrega y evaluación

