Minishell

Tan bonito como shell

Resumen: FEl objetivo de este proyecto es que crees un shell sencillo. Si, tu propio
pequeno bash. Aprenderds un montdén sobre procesos y file descriptors.

Version: 7.1

Indice general

II1.

I11.

IV.

Introduccion
Instrucciones generales
Parte obligatoria
Parte extra

Entrega y evaluacién

Capitulo 1

Introduccion

La existencia de los shells se remonta a los origenes de IT.

Por aquel entonces, todos los programadores estaban de acuerdo en que comunicarse
con un ordenador utilizando interruptores de 1/0 era realmente frustrante.

Era cuestion de tiempo que llegaran a la idea de crear un software para comunicarse
con los ordenadores utilizando lineas de comando interactivas en un lenguaje parecido al
utilizado por los humanos.

Gracias a Minishell, podrés viajar en el tiempo y volver a los problemas a los que
la gente se enfrentaba cuando Windows no existia.

Capitulo 1I

Instrucciones generales

e Tu proyecto debera estar escrito en C.

e Tu proyecto debe estar escrito siguiendo la Norma. Si tienes archivos o funciones
adicionales, estas estan incluidas en la verificacién de la Norma y tendrds un O si
hay algin error de norma en cualquiera de ellos.

e Tus funciones no deben terminar de forma inesperada (segfault, bus error, double
free, etc) excepto en el caso de comportamientos indefinidos. Si esto sucede, tu
proyecto sera considerado no funcional y recibirdas un 0 durante la evaluacion.

e Toda la memoria asignada en el heap debera liberarse adecuadamente cuando sea
necesario. No se permitiran leaks de memoria.

e Siel enunciado lo requiere, deberds entregar un Makefile que compilard tus archivos
fuente al output requerido con las flags -Wall, -Werror y -Wextra, utilizar cc y
por supuesto tu Makefile no debe hacer relink.

e Tu Makefile debe contener al menos las normas $(NAME), all, clean, fclean y
re.

e Para entregar los bonus de tu proyecto deberas incluir una regla bonus en tu
Makefile, en la que anadiras todos los headers, librerias o funciones que estén
prohibidas en la parte principal del proyecto. Los bonus deben estar en archivos
distintos _bonus.{c/h}. La parte obligatoria y los bonus se evaliian por separado.

e Si tu proyecto permite el uso de la 1ibft, deberas copiar su fuente y sus Makefile
asociados en un directorio 1ibft con su correspondiente Makefile. El Makefile
de tu proyecto debe compilar primero la libreria utilizando su Makefile, y después
compilar el proyecto.

e Te recomendamos crear programas de prueba para tu proyecto, aunque este trabajo
no sera entregado ni evaluado. Te dard la oportunidad de verificar que tu
programa funciona correctamente durante tu evaluacion y la de otros companeros.
Y si, tienes permitido utilizar estas pruebas durante tu evaluacién o la de otros
companeros.

e Entrega tu trabajo en tu repositorio Git asignado. Solo el trabajo de tu repositorio
Git sera evaluado. Si Deepthought evaliia tu trabajo, lo harda después de tus com-

Minishell Tan bonito como shell

pafieros. Si se encuentra un error durante la evaluacion de Deepthought, esta habra
terminado.

Capitulo III

Parte obligatoria

Nombre de pro- | minishell

grama

Archivos a entre- | Makefile, *.h, *.c

gar

Makefile NAME, all, clean, flean, re

Argumentos

Funciones autor- | readline, rl_clear_history, rl_on_new_line,
izadas rl_replace_line, rl_redisplay, add_history,

printf, malloc, free, write, access, open, read,
close, fork, wait, waitpid, wait3, wait4, signal,
sigaction, kill, exit, getcwd, chdir, stat,

lstat, fstat, unlink, execve, dup, dup2, pipe,
opendir, readdir, closedir, strerror, perror,
isatty, ttyname, ttyslot, ioctl, getenv, tcsetattr,
tcgetattr, tgetent, tgetflag, tgetnum, tgetstr,
tgoto, tputs

Se permite usar

libft

Si

Descripciéon

Escribe un shell

Tu shell debera:

e Mostrar una entrada mientras espera un comando nuevo.

e Tener un historial funcional.

e Buscar y ejecutar el ejecutable correcto (basado en la variable PATH o mediante el
uso de rutas relativas o absolutas).

e Evita utilizar mas de una variable global para indicar la recepcién de una senal.
Piensa en lo que implica: Esta aproximacion evita que tu gestor de senales acceda
a tus estructuras de datos principales.

Minishell Tan bonito como shell

jCuidado!. Esta variable global no puede proporcionar ninguna otra
informacién o datos que el numero de una sefial recibida. Por lo tanto

estd prohibido utilizar estructuras de tipo "norm" en global.

e No interpretar comillas sin cerrar o caracteres especiales no especificados en el
enunciado como \ (barra invertida) o ; (punto y coma).

e Gestionar que la ’ evite que el shell interprete los metacaracteres en la secuencia
entrecomillada.

e Gestionar que la " evite que el shell interprete los metacaracteres en la secuencia
entrecomillada exceptuando $ (signo de ddlar).

e Implementar redirecciones:

@)

< debe redirigir input.

@)

> debe redirigir output.

o “<<” debe recibir un delimitador, después leer del input de la fuente actual
hasta que una linea que contenga solo el delimitador aparezca. Sin embargo,
no necesita actualizar el historial.

o “>>” debe redirigir el output en modo append.

e Implementar pipes (caracter |). El output de cada comando en la pipeline se
conecta a través de un pipe al input del siguiente comando.

e Gestionar las variables de entorno ($ seguidos de caracteres) que deberdn ex-
pandirse a sus valores.

e Gestionar $7, que deberd expandirse al estado de salida del comando mas reciente
ejecutado en la pipeline.

e Gestionar ctrl-C ctrl-D ctrl-\, que deberan funcionar como en bash.
e Cuando sea interactivo:
o ctrl-C imprime una nueva entrada en una linea nueva.

o ctrl-D termina el shell.

o ctrl-\ no hace nada.

e Debera implementar los built-ins:

o echo con la opcion -n.
o cd solo con una ruta relativa o absoluta.
o pwd sin opciones.

o export sin opciones.

Minishell Tan bonito como shell

o unset sin opciones.
o env sin opciones o argumentos.
o exit sin opciones.

La funcién readline puede producir algunos leaks que no necesitas arreglar. Eso no
significa que tu cddigo, si, el cédigo que has escrito, pueda producir leaks.

Limitate a hacer lo que pide el enunciado. Cualquier cosa no
solicitada no se requiere.

Para cada punto, y en caso de dudas, puedes utilizar bash como una
referencia.

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/

Capitulo IV

Parte extra

Tu programa deberda implementar los siguientes puntos:

e &&, || con paréntesis para prioridades.

e Los wildcards * deben funcionar para el directorio actual.

Los bonus solo seran evaluados si tu parte obligatoria estd PERFECTA.
Con PERFECTA queremos naturalmente decir que debe estar completa,

sin fallos incluso en el mas absurdo de los casos o de mal uso,

etc. Significa que si tu parte obligatoria no tiene TODOS los puntos

durante la evaluacidén, tus bonus seradn completamente IGNORADOS.

Capitulo V

Entrega y evaluacién

Entrega tu proyecto en tu repositorio Git como de costumbre. Solo el trabajo entre-
gado en el repositorio sera evaluado durante la defensa. No dudes en comprobar varias
veces los nombres de los archivos para verificar que sean correctos.

M L Q = d Z 0k v P
)7 e Q 6 u nk] R *
f *q 1v = 0 , ?7ZP
7 c 1V H
e 9 O 8
)
’ > D s / W
5 E ? > M
q < >
z b H (3
1 X OgE 6

	Introducción
	Instrucciones generales
	Parte obligatoria
	Parte extra
	Entrega y evaluación

